Research Article | Open Access
Volume 7 | Issue 2 | Year 2020 | Article Id. IJAC-V7I2P109 | DOI : https://doi.org/10.14445/23939133/IJAC-V7I2P109Synthesis of novel main-chain azo-benzene poly(ester amide)s via interfacial polycondensation
Giorgi Tsiklauri, Temur Kantaria, Tengiz Kantaria, Ramaz Katsarava, Giorgi Titvinidze
Citation :
Giorgi Tsiklauri, Temur Kantaria, Tengiz Kantaria, Ramaz Katsarava, Giorgi Titvinidze, "Synthesis of novel main-chain azo-benzene poly(ester amide)s via interfacial polycondensation," International Journal of Applied Chemistry, vol. 7, no. 2, pp. 63-69, 2020. Crossref, https://doi.org/10.14445/23939133/IJAC-V7I2P109
Abstract
Two amino acid-based poly(ester amide)s (PEAs) with azobenzene moieties in the main chain were successfully synthesized via interfacial polycondensation of a dip-toluenesulfonic acid salt of bis-(Lleucine)- 1,6-hexylene diester with azobenzene 3,3′- dicarbonyl chloride or azobenzene 4,4′-dicarbonyl chloride. The structures of the obtained polymers were confirmed and characterized by 1H and 13C NMR spectroscopy and gel permeation chromategraphy (GPC). The photo-induced cis-trans-isomerization of azobenzene containing PEAs in the DMF solution was studied by UV-Vis spectroscopy. Irradiation with U.V. light (365 nm) resulted in reversible cis-trans isomerization. The effect of cistrans-isomerization on the glass transition temperature was investigated by differential scanning calorimetry (DSC). It is shown that glass transition temperature decreases by irradiation when changes from trans to cis-isomer. Synthesized polymers were used in the preparation of photoresponsive nanoparticles for targeted drug delivery application. Nanoparticles' average diameter (A.D.), polydispersity index (PDI), and zeta-potential (Z.P.) were determined by Dynamic Light Scattering (DLS). Moreover, the stability of the N.P.s over time at low temperatures and upon irradiation were investigated.
Keywords
Biodegradable smart polyester amides, main chain azo-benzene polymers, trans-to-cis isomerization, U.V. irradiation.
References
[1] O. S. Fenton, K. N. Olafson, P. S. Pillai, M. J. Mitchell, R. Langer, Advances in Biomaterials for Drug Delivery, Adv. Mater. 2018, 30, 1705328 (1-29).
[2] P. S. Kowalski, C. Bhattacharya, S. Afewerki, R. S. Langer, Smart Biomaterials: Recent Advances and Future Directions, ACS Biomater. Sci. Eng. 2018, 4, 3809-3817.
[3] P. Xiao, J. Zhang, J. Zhao, M. H. Stenzel, Light-induced release of molecules from polymers, Prog. Polym. Sci. 2017, 74, 1–33.
[4] Y. Wang, D. S. Kohane, External triggering and triggered targeting strategies for drug delivery, Nat. Rev. Mater. 2017, 2, 17020.
[5] R. Tong, D. S. Kohane, Shedding light on nanomedicine, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 638-662.
[6] S. Sortino, Photoactivated nanomaterials for biomedical release applications, J. Mater. Chem., 2012, 22, 301.
[7] A. Y. Rwei, W. Wang, D. S. Kohane, Photoresponsive nanoparticles for drug delivery, Nano Today 2015, 10, 451–467.
[8] C.S. Linsley, B.M. Wu, Recent advances in light-responsive on-demand drug delivery systems, Ther. Deliv. 2017, 8, 89-107.
[9] S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West, Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery, J. Biomed. Mater. Res. 2000, 51, 293-298.
[10] C. Alvarez-Lorenzo, L. Bromberg, A. Concheiro, Lightsensitive Intelligent Drug Delivery Systems, Photochem. Photobiol. 2009, 85, 848-860.
[11] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
[12] O. Bertrand, J. Gohy, Photoresponsive polymers: Synthesis and applications, Polym. Chem. 2017, 8, 52–73.
[13] F.D. Jochum, P. Theato, Temperature- and light-responsive smart polymer materials, Chem. Soc. Rev., 2013, 42, 7468-7483.
[14] G.S. Kumar, D.C. Neckers, Photochemistry of Azobenzene-Containing Polymers, Chem. Rev. 1989, 89, 1915-1925.
[15] A. Barhoumi, Q. Liu, D.S. Kohane, Ultraviolet Light-Mediated Drug Delivery: Principles, Applications, and Challenges, J. Controlled Release 2015, 219, 31−42.
[16] H.M. Dhammika Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., 2012, 41, 1809–1825.
[17] B.P. Timko, T. Dvir, D.S. Kohane, Remotely Triggerable Drug Delivery Systems, Adv. Mater. 2010, 22, 4925–4943.
[18] E. R. Ruskowitz, C.A. DeForest, Photoresponsive Biomaterials for Targeted Drug Delivery and 4D Cell Culture, Nat. Rev. Mater. 2018, 3, 17087.
[19] S. Jia, W.-K. Fong, B. Graham, B. J. Boyd, Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications, Chem. Mater. 2018, 30, 2873−2887.
[20] J.M. Silva, E. Silva, R.L.Reis, Light-triggered Release of Photocaged Therapeutics - where are we now?, J Control Release 2019, 298, 154-176.
[21] W.A. Velema, W. Szymanski, B.L. Feringa, Photopharmacology: Beyond Proof of Principle, J. Am. Chem. Soc. 2014, 136, 2178−2191.
[22] M.-Q. Zhu, G.-F. Zhang, C. Li, M.P. Aldred, E. Chang, R.A. Drezek, A.D. Li, Reversible Two-Photon Photoswitching and Two-Photon Imaging of Immunofunctionalized Nanoparticles Targeted to Cancer Cells, J. Am. Chem. Soc. 2011, 133, 365–372.
[23] J. Croissant, M. Maynadier, A. Gallud, H.P. N’Dongo, J.L. Nyalosaso, G. Derrien, C. Charnay, J.-O. Durand, L. Raehm, F. Serein-Spirau, N. Cheminet, T. Jarrosson, O. Mongin, M. Blanchard-Desce, M. Gary-Bobo, M. Garcia, J. Lu, F. Tamanoi, D. Tarn, T.M. Guardado-Alvarez, J.I. Zink, Two-
Photon-Triggered Drug Delivery in Cancer Cells Using Nanoimpellers, Angew. Chem. Int. Ed. 2013, 52, 13813 –13817.
[24] G. Cabré, A. Garrido-Charles, M. Moreno, M. Bosch, M. Porta-de-la-Riva, M. Krieg, M. Gascón-Moya, N. Camarero, R. Gelabert, J.M. Lluch, F. Busqué, J. Hernando, P. Gorostiza, R. Alibés, Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation, Nat. Commun. 2019, 10, 907.
[25] Y. Ji, S. Shan, M. He, C.‐ C. Chu, A Novel Pseudo-Protein-Based Biodegradable Nanomicellar Platform for the Delivery of Anticancer Drugs, Small 2017, 13(1), 1-17.
[26] W.G. Turnell, Z. Gomurashvili, R. Katsarava (2006 ) Therapeutic polymers and methods. U.S. Patent Application 20060286064 A1.
[27] B.-W. Liu, H.-B. Zhao, Y. Tan, L. Chen, Y.-Z. Wang, Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: From thermal crosslinking to flame retardance, Polymer Degradation and Stability 2015, 122, 66-76.
[28] Q.-c. Jia, Y.-j. Chen, H.-m. Hou, Microwave-assisted synthesis of azo aromatic diacyl chlorides Advanced Materials Research 2012, 524-527, 1702-1705.
[29] S. Ghosh, D. Usharani, A. Paul, S. De, E. D. Jemmis, S. Bhattacharya, Design, Synthesis, and DNA Binding Properties of Photoisomerizable Azobenzene-Distamycin Conjugates: An Experimental and Computational Study, Bioconjugate Chem. 2008, 19, 2332–2345.
[30] M. L. Tomlinson, The Reduction of p-Nitrobenzoic Acid to Hydrazo- and Azo-benzene-4 : 4'-dicarboxyEic Acids by Means of Glucose, J. Chem. Soc. 1946, 756.
[31] Tem. Kantaria, Teng. Kantaria, S. Kobauri, M. Ksovreli, T. Kachlishvili, N. Kulikova, D. Tugushi, R. Katsarava. Biodegradable nanoparticles made of amino acid based ester polymers: preparation, characterization, and in vitro biocompatibility study. Appl. Sci. 2016; 6, 444. doi:10.3390/app6120444.
[32] H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G.K. Auernhammer, R. Berger, H.-J. Butt, S. Wu, Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solidto-liquid transitions, Nat. Chem. 2017, 9, 145–151.
[33] C. J. Martínez Rivas, M. Tarhini, W. Badri, K. Miladi, H. Greige-Gerges, Q.A. Nazari, S.A. Galindo Rodríguez, R.Á. Román, H. Fessi, A. Elaissari. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017; 532, 66-81.
[34] Sunny Pannu. "Investigation of Natural Variants for Antimicrobial Finishes in Innerwear A Review Paper for Promotion of Natural Hygiene in Innerwear". International Journal of Engineering Trends and Technology (IJETT). V4(5):2168-2171 May 2013. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group.