Research Article | Open Access
Volume 1 | Issue 1 | Year 2014 | Article Id. IJMS-V1I1P103 | DOI : https://doi.org/10.14445/23939117/IJMS-V1I1P103

Design of CMOS Avalanche Photodiode for Embedded Laser Range Finder


Irfan Abdul Bari and Prof. Abdul Mubeen

Citation :

Irfan Abdul Bari and Prof. Abdul Mubeen, "Design of CMOS Avalanche Photodiode for Embedded Laser Range Finder," International Journal of Medical Science, vol. 1, no. 1, pp. 7-12, 2014. Crossref, https://doi.org/10.14445/23939117/IJMS-V1I1P103

Abstract

- In this paper, the design of CMOSAPD in standard 0.35 µm CMOS technology is presented; Simulation and Comparison between two CMOS avalanche photodiode (APDs) modes are performed. Electrical and Optical Simulations are carried out using SILVACO ATLAS© Suite. Two modes of Electrical Simulation have been presented. The performances of APDs in both modes have been compared in terms of responsively, noise and gain. Both structures present interesting characteristics. Monolithic integration of sensors and circuits in CMOS processes result in tremendous advantages in terms of dimensions shrink, low power consumption, low cost etc.

Keywords

CMOS APD, Range Finder, SPAD, Distance measurement, integrated Optoelectronics.

References

[1]Rochas, A. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiode s fabricated in conventional CMOS technologies,” IEEE Trans. ElectronDevices, vol. 49, no. 3, pp. 387–394, Mar. 2002.
[2]C. J. Stapels,W. G. Lawrence, F. L. Augustine, and J. F. Christian, “Characterization of a CMOS Geiger photo diode pixel,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 631–635, Apr.2006.
[3]N. Faramazpour, M. Jamal Deen, S. Shirani, and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18 µm technology,” IEEE Trans. ElectronDevices, vol. 55, no. 3, pp. 760–767, Mar. 2008.
[4]C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implement ed in 130-nm CMOS technology,” IEEE J. Sel. Topics QuantumElectron., vol. 13, no. 4, pp. 863–869, Jul./Aug. 2007.
[5]H.-S. Kang and W.-Y. Choi, “Fibre-supported 60  GHz self-
[6]heterodyne systems based on CMOS-compatible harmonic optoelectronic mixers,” Electron. Lett., vol. 43, no. 20, pp. 1101– 1103, Sep. 2007.
[7]H. Ailisto, V. Heikinnen, R. Mitikka, R. Myllyla, J. Kostamovaara, A. Mantyniemi, and M. Koskinen, “Scannerlessimaging pulsed-laser range finding,” J. Opt. A, Pure Appl. Opt.,vol. 4, no. 6, pp. 337–346, Nov. 2002.
[8]S. Poujouly and B. Journet, “Laser range finding by phase-shiftmeasurement: Moving towards smart systems,” in Proc. SPIE Mach. Vis. Three-Dimensional Imaging Syst. Inspection Metrology, Boston, MA, vol. 4189, pp. 152–160, Nov. 2000.
[9]B. Journet and G. Bazin, “A low-cost laser range finder basedon an FMCW-likemethod,” IEEE Trans. Instrum.Meas., vol. 49,no. 4, pp. 840– 843, Aug. 2000. 
[10] D. Castagnet, H. Tap-Beteille, and M. Lescure, “APD-basedheterodyne optical head of a phase-shift laser rangefinder,” Opt.Eng., vol. 40, no. 4, pp. 43 003-1–43 003-7, 2006