Research Article | Open Access
Volume 7 | Issue 11 | Year 2020 | Article Id. IJME-V7I11P107 | DOI : https://doi.org/10.14445/23488360/IJME-V7I11P107

Fabrication of MoS2 nanomaterials by ultrasonic vibration in the water


Tran Minh Duc, Tran The Long

Citation :

Tran Minh Duc, Tran The Long, "Fabrication of MoS2 nanomaterials by ultrasonic vibration in the water," International Journal of Mechanical Engineering, vol. 7, no. 11, pp. 54-56, 2020. Crossref, https://doi.org/10.14445/23488360/IJME-V7I11P107

Abstract

Molybdenum Disulfide (MoS2) nanomaterial has been found in many applications in the industry. There have been many studies on the synthesis of MoS2 nanomaterial using different ways; however, expensive chemicals, long reaction times, and specialized equipment are usually required. The work presents the synthesis process of MoS2 nanomaterial by the ultrasonic vibration method in water, a simple method at room temperature. Morphology, structure, and properties of MoS2 nanoparticles were determined by scanning electron microscopy (SEM) and transmission electron microscope (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The obtained product has a hexagonal structure (2H-MoS2) with a size of about 100-1500nm and a thickness of 2-15nm.

Keywords

MoS2 nanomaterial, nanoparticles, laminated structure, narrow bandgap.

References

[1] Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, No. 10, 9451–9469. https://doi.org/10.1021/acsnano.5b05040.
[2] Thripuranthaka, M.; Kashid, R. V; Rout, C. S.; Late, D. J. Temperature-Dependent Raman Spectroscopy of Chemically Derived Few-Layer MoS2 and WS2 Nanosheets. App. Phys. Lett, 2014, 104, 081911. https://doi.org/10.1063/1.4866782
[3] Barrera, D.; Wang, Q.; Lee, Y.-J.; Cheng, L.; Kim, M. J.; Kim, J.; Hsu, J. W. P. Solution Synthesis of Few-Layer 2H MX2 (M = Mo, W; X = S, Se). J. Mater. Chem. C, 5 (11), (2017) 2859–2864. https://doi.org/10.1039/C6TC05097B.
[4] Zhang, Y.; Yu, Y.; Mi, L.; Wang, H.; Zhu, Z.; Wu, Q.; Zhang, Y.; Jiang, Y. In Situ Fabrication of Vertical Multilayered MoS2/Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. Small, 8, (2016) 1062–1071. https://doi.org/10.1002/smll.201502923.
[5] Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication Performance of MoS2 and SiO2 Nanoparticles as Lubricant Additives in Magnesium Alloy-Steel Contacts. Tribol. Int. 2016, 93, 63–70. https://doi.org/10.1016/j.triboint.2015.08.009.
[6] Liang, Y.; Yoo, H. D.; Li, Y.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage. Nano Lett. (2015) 15 (3), 2194–2202. https://doi.org/10.1021/acs.nanolett.5b00388.
[7] Duc, T.M.; Long, T.T.; Chien, T.Q. Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants (2019) 7, 40, doi:10.3390/lubricants7050040.
[8] Dong, P.Q.; Duc, T.M.; Long, T.T.; Performance Evaluation of MQCL Hard Milling of SKD 11 Tool Steel Using MoS2 Nanofluid. Metals. (2019) 9, 658, doi:10.3390/met9060658.
[9] Su, S.-H.; Hsu, W.-T.; Hsu, C.-L.; Chen, C.-H.; Chiu, M.-H.; Lin, Y.-C.; Chang, W.-H.; Suenaga, K.; He, J.-H.; Li, L.-J.; Chen, P.; Dong, X. Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Front. Energy Res. 2(7) 2014 1–8. https://doi.org/10.3389/fenrg.2014.00027.
[10] Vazirisereshk, M. R.; Martini, A.; Strubbe, D. A.; Baykara, M. Z. Solid Lubrication with MoS2: A Review. Lubricants 7 (7) (2019). https://doi.org/10.3390/LUBRICANTS7070057.
[11] Hsu, C. L.; Chang, Y. H.; Chen, T. Y.; Tseng, C. C.; Wei, K. H.; Li, L. J. Enhancing the Electrocatalytic Water Splitting Efficiency for Amorphous MoSx. Int. J. Hydrogen Energy, 39 (10), (2014) 4788–4793. https://doi.org/10.1016/j.ijhydene.2014.01.090.
[12] Zou, L.; Qu, R.; Gao, H.; Guan, X.; Qi, X.; Liu, C.; Zhang, Z.; Lei, X. MoS2/RGO Hybrids Prepared by a Hydrothermal Route as a Highly Efficient Catalytic for Sonocatalytic Degradation of Methylene Blue. Results Phys., 14(7) (2019) 102458. https://doi.org/10.1016/j.rinp.2019.102458.
[13] Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-Layer MoS2 Films. Sci. Rep, 3, (2013) 1866. https://doi.org/10.1038/srep01866.
[14] Lin, H.; Wang, J.; Luo, Q.; Peng, H.; Luo, C.; Qi, R.; Huang, R.; Travas-Sejdic, J.; Duan, C. G. Rapid and Highly Efficient Chemical Exfoliation of Layered MoS2 and WS2. J. Alloys Compd, 699, (2017) 222–229. https://doi.org/10.1016/j.jallcom.2016.12.388.
[15] Xia, J. X.; Ge, Y. P.; Zhao, D. X.; Di, J.; Ji, M. X.; Yin, S.; Li, H. M.; Chen, R. Microwave-Assisted Synthesis of Few-Layered MoS2/BiOBr Hollow Microspheres with Superior Visible-Light-Response Photocatalytic Activity for Ciprofloxacin Removal. Crystengcomm, 17 (19), (2015) 3645–3651. https://doi.org/10.1039/c5ce00347d.
[16] Hwang, W. S.; Remskar, M.; Yan, R.; Kosel, T.; Kyung Park, J.; Jin Cho, B.; Haensch, W.; Xing, H.; Seabaugh, A.; Jena, D. Comparative Study of Chemically Synthesized and Exfoliated Multilayer MoS2 Field-Effect Transistors. Appl. Phys. Lett., 102 (4), (2013) 2014–2017. https://doi.org/10.1063/1.4789975.
[17] Nguyen, T. P.; Sohn, W.; Oh, J. H.; Jang, H. W.; Kim, S. Y. Size-Dependent Properties of Two-Dimensional MoS2 and WS2. J. Phys. Chem. C, 120 (18), (2016) 10078–10085. https://doi.org/10.1021/acs.jpcc.6b01838. [18] Tran Minh Duc, Tran The Long*, Tran Quyet Chien, Ngo Minh Tuan. Study of cutting forces in hard milling of hardox 500 steel under MQCL condition using nano additives. SSRG International Journal of Mechanical Engineering (SSRG-IJME), 6(11), (2019) 1-7.