Research Article | Open Access
Volume 8 | Issue 7 | Year 2021 | Article Id. IJECE-V8I7P102 | DOI : https://doi.org/10.14445/23488549/IJECE-V8I7P102A Better Design of Quadrature Oscillator using OTRAs
T. S. Rathore, U. P. Khot, Prasoon Vishwakarma
Citation :
T. S. Rathore, U. P. Khot, Prasoon Vishwakarma, "A Better Design of Quadrature Oscillator using OTRAs," International Journal of Electronics and Communication Engineering, vol. 8, no. 7, pp. 11-13, 2021. Crossref, https://doi.org/10.14445/23488549/IJECE-V8I7P102
Abstract
A better design of quadrature oscillators using OTRAs is suggested. The simulated results are in close agreement with the theoretical ones.
Keywords
Barkhausen Criteria, Oscillator, OTRA, Quadrature Oscillator
References
[1] T. S. Rathore, Minimal realization of RC voltage transfer function by unsymmetrical lattice networks, IEEE Trans. Circuits Syst., 22()(1975) 313-316.
[2] T. S. Rathore, Passive and active realizations of RC all-pass voltage transfer functions, InstEngrs(I), 54(ET-3)(1974) 128-130.
[3] T. S. Rathore and S. M. Dasgupta, A simple design for an all-pass filter, Int J Electron, 39()(1975) 93-96.
[4] T. S. Rathore, Digitally-controlled all-pass and notch filters, Inst Engrs(I), TE 31()(1985) 28-29.
[5] T. S. Rathore, A systematic current and voltage transfer function realizations with a single active element, IOSR Journal of Electrical and Electronics Engineering, p-ISSN: 2320-3331, 14(6)(2019) 79-89.
[6] A. Fabre, O. Saaid, and K. Bartgekeny, On frequency limitation of the circuits based on second generation current conveyors, Analog Integrated Circuits and Signal Processing, 7()(1995)113-129.
[7] M. Higashimura and Y. Fukui, Realization of current-mode all-pass networks using a current conveyor, 37()(1990) 660-661.
[8] Y. Liu, H. L. Lin, and C. T., High output impedance current-mode first-order all-pass networks with four grounded components and two CCIIs, Int. J. of Electron., 93()(2006) 613-621.
[9] Horng, Jiun-Wel, Hou, Chun-Li, Hsu, Chih-Hou, Yang, Dun-Yih, Hp, Min-Jie., Low input and high output impedance current-mode first-order all-pass filter employing grounded passive components, Int. J. Circuits and Syst., 3()(2012) 176-179.
[10] M. A. Ibrahim, S. Minaei, and H. Kuntman, A 22.5 MHz biquad using differential voltage current conveyor and grounded passive elements, Int. J. Electronics and Communications, 59()(2005) 311-318.
[11] M. A. Khan, and S. Maheshwari, A simple first-order all-pass section using a single CCII, Int. J. Electron., 87()(2000) 303-306.
[12] M. A. Khan, P. Beg, and M. T. Ahmed, First-order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIs, 32()(2007) 119-126.
[13] S. Maheshwari, and I. A. Khan, Novel first-order all-pass sections using a single CCIII, Int. J. Electron., 88()(2001) 773-778.
[14] S. Maheshwari, High input impedance VM-APs with grounded passive elements, IET Circuits, Devices Syst, 1(1)(2007) 72-78.
[15] Jitendra Mohan, Single active element based current-mode all-pass filter, Int. J. Computer Applications (0975–8887), 82(1)(2013) 23-27.
[16] J. Mohan, and S. Maheshwari, Two active elements based all-pass section suited for current-mode cascading, World Academy of Science, Engineering and Technology, Int. J. Electrical Engg., 7()(2013) 1217-1221.
[17] Tejmal S. Rathore and Uday P. Khot, Current conveyor equivalent circuits, Int. J. Engineering and Technology (IJET), 4(1)(2012) 1-7.
[18] T. S. Rathore, and S. M. Dasgupta, Current conveyor realization of transfer functions, Proc IEE, 122()(1975) 1119-1120.
[19] T. S. Rathore, Minimal realizations of first-order all-pass functions, Inst Engrs(I), TE 29()(1983) 124-125.
[20] A. M. Soliman, New current-mode filters using current conveyors, Int. J. Electron. and Comm., AEU, 51()(1997) 275-278.
[21] A. M. Soliman, Realization of an all-pass transfer function using second-generation current conveyor, IEEE Proc. 68()(1980) 1035.
[22] S. Kilinc, and U. Cam, Operational trans-conductance amplifier based first-order all-pass filter with an application, in Proc IEEE Int Midwest Symp, Circuits Syst., Hiroshima, Japan, (2004) 65-68.
[23] C. Cakir, U. Cam, and O. Cicekoglu, Novel all-pass filter configuration employing single OTRA, IEEE Trans Circuits Syst. II, Analog and Digital Signal Processing, 52()(2005) 122-125.
[24] T. S. Rathore, and U. P. Khot, Single OTRA realization of transfer functions, Inst. Engrs. (India), J. ET, 89()(2008) 33-38.
[25] K. N. Salama, and A. M. Soliman, CMOS operational transconductance amplifier for analog signal processing applications, Microelectronic. J., 30()(1999) 235-245.
[26] M. Higashimura, Current-mode all-pass filter using FTFN with the grounded capacitor, Electron Lett., 27()(1991) 1182-1183.
[27] S. I. Liu and J. L. Lee, Insensitive current/voltage filters using FTFNs. Electron. Lett., 32()(1996) 1079–1080.
[28] S. I. Liu, and C. Hwang, Realization of current-mode filters using single FTFN, Int. J. Electron., 82()(1997) 499–502.
[29] M. T. Abuelmaátti, Cascadable current mode filters using single FTFN, Electron. Lett., 32()(1996) 1457-1458.
[30] T. S. Rathore, and U. P. Khot, Single FTFN realization of current transfer functions, IETE J Research, 51(3)(2005) 193-199.
[31] S. Kilinc, and U. Cam, Current mode first-order all-pass filter employing single current operational amplifier, Analog Integrated Circuits, and Signal Processing, 41()(2004) 47-53.
[32] S. Maheshwari, and I. A. Khan, Novel first-order all-pass filter employing single current operational amplifier, Analog Integrated Circuits and Signal Processing, 41()(2004) 47-53.
[33] S. Minaei, and M. A. Ibrahim, General configuration for realizing current-mode first-order all-pass filter using DVCC, Int. J. Electron., 92()(2005) 347-356.
[34] Tejmal S. Rathore, Realizations of voltage transfer functions using DVCCs, Circuits, and Systems, 9()(2018) 141-147.
[35] A. U. Keskin, and D. Biolek, Current mode quadrature oscillator using a current differencing transconductance amplifier (CDTA), IEE Proc. Circuits devises Syst., 153()(2006) 214-218.
[36] T. S. Rathore, Realizations of current transfer functions using the current differencing trans-conductance amplifier, Circuits, Systems, and Signal Processing, DOI 10.1007/s00034-019-01036-x
[37] A. Toker, S. Ozoguz, O. Cicekoglu, and C. Acar, Current mode all-pass filter using a current differencing buffered amplifier and a new high-Q band-pass filter configuration, IEEE Trans Circ and Syst. II: Analog and Digital Signal Processing, 47())(2000) 949-954.
[38] Acar and S. Ozoguz, A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters, Microelectron. J., 30(2) (1999) 157-160