Research Article | Open Access
Volume 5 | Issue 10 | Year 2018 | Article Id. IJECE-V5I10P102 | DOI : https://doi.org/10.14445/23488549/IJECE-V5I10P102

Design of Low Power Encoder Using Switch Logic


Shaik Hameeda Noor, M.Venkata.Subbaiah, T.V.Nirmala, Dr.T.Lalith Kumar and S.Saleem

Citation :

Shaik Hameeda Noor, M.Venkata.Subbaiah, T.V.Nirmala, Dr.T.Lalith Kumar and S.Saleem, "Design of Low Power Encoder Using Switch Logic," International Journal of Electronics and Communication Engineering, vol. 5, no. 10, pp. 6-8, 2018. Crossref, https://doi.org/10.14445/23488549/IJECE-V5I10P102

Abstract

This document introduces a switch logic-design technique for line-encoders, including with transmission-gate-logic, pass-transistor-logic and standard complementary metal-oxide semi-conductor (CMOS).Targeting on reducing the transistor count t, power utilization All proposed encoders have full-voltage level capability and decreased transistor count considered with their standard CMOS methodology. Finally, a different types of simulation at 32 nm gives the present method gives a effective performance in power and delay.

Keywords

Encoder, Switch-Logic, PTL, and TG

References

[1] N.H.E.Weste and D. M. Harris, CMOS VLSI Design, a Circuits and Systems Perspective, 4th ed. Boston, MA, USA: Addison-Wesley, 2011. 
[2] R.Zimmermann and W. Fichtner, “Low-power logic styles: CMOS ver-sus pass-transistor logic,” IEEE J. Solid State Circuits, vol. 32, no. 7, pp.1079–1090, Jul. 1997. 
[3] K.Yano et al., “A 3.8-ns CMOS 16 × 16-b multiplier using complemen-tary pass-transistor logic,” IEEE J. Solid-State Circuits, vol. 25, no. 2, pp.388–393, Apr. 1990. 
[4] M.Suzuki et al., “A 1.5 ns 32b CMOS ALU in double pass-transistor logic,” in Proc. IEEE Int. Solid-State Circuits Conf., 1993, pp. 90–91. 
[5] X.Wu, “Theory of transmission switches and its application to design of CMOS digital circuits,” Int. J. Circuit Theory Appl., vol. 20, no. 4, pp.349–356, 1992. 
[6] V.G.Oklobdzija and B. Duchene, “Pass-transistor dual value logic for low-power CMOS,” in Proc. Int. Symp. VLSI Technol., 1995, pp.341–344. 
[7] M.A.Turi and J. G. Delgado-Frias, “Decreasing energy consump-tion in address decoders by means of selective precharge schemes,” Microelectron. J., vol. 40, no. 11, pp. 1590–1600, 2009. 
[8] V.Bhatnagar, A. Chandani, and S. Pandey, “Optimization of row decoder for 128 × 128 6T SRAMs,” in Proc. IEEE Int. Conf. VLSI-SATA, 2015, 1–4. 
[9] A.K.Mishra, D. P. Acharya, and P. K. Patra, “Novel design tech-nique of address decoder for SRAM,” Proc. IEEE ICACCCT, 2014, qq.1032–1035. 
[10] D.Markovic,´ B. Nikolic,´ and V. G. Oklobdžija, “A general method in syn-thesis of pass-transistor circuits,” Microelectron. J., vol. 31, pp. 991–998, 2000. 
[11] N.Lotze and Y. Manoli, “A 62 mV 0.13 μm CMOS standard-cell-based design technique using Schmitt-trigger logic,” IEEE J. Solid State Circuits, vol. 47, no. 1, pp. 47–60, Jan. 2012. 
[12] S.Hameeda Noor,T. Vijaya Nirmala,M.V.Subbaiah, and S.Saleem “Low Power High Performance Decoder using Switch Logic.” Ijet journal –ISSN:2395-1303.