Research Article | Open Access
Volume 4 | Issue 1 | Year 2017 | Article Id. IJAP-V4I2P102 | DOI : https://doi.org/10.14445/23500301/IJAP-V4I2P102Synthesis and Characterization of New Red Phosphorescent Iridium (III) Quinoline Complex for OLEDs
H. K. Dahule, Arelli Sridhar Goud
Citation :
H. K. Dahule, Arelli Sridhar Goud, "Synthesis and Characterization of New Red Phosphorescent Iridium (III) Quinoline Complex for OLEDs," International Journal of Applied Physics, vol. 4, no. 1, pp. 14-19, 2017. Crossref, https://doi.org/10.14445/23500301/IJAP-V4I2P102
Abstract
A new red emitting iridium complex bearing with 2,4- diphenylquinoline, (DPQ) ligand has been synthesized and characterized. The various techniques like mass spectrometry, 1H-NMR, DTA/TGA, FTIR and XRD were employed to characterize the complex. A strong 1MLCT (singlet metal-to-ligand charge-transfer) and 3MLCT (triplet metal-to-ligand chargetransfer) absorption peaks at 267, 352, 441, 480, 522, and 564 nm in tetrahydrofuran (THF) are reported. In the photoluminescence (PL) spectra, the DPQ exhibits the luminescence peak at 418 nm when excited at 383 nm. The PL emission peak at 615 nm with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.68, 0.31) is reported in Ir(DPQ)2 (acac) complex. The soluble red emitting Ir(DPQ)2(acac) complex in common organic solvents is promising for flexible organic devices.
Keywords
Light emitting diode ,Iridium complex, photoluminescence, soluble red emitting Iridium complex
References
[1].Lamansky, S. et al. J. Am. Chem. Soc. 123, 4304–4312 (2001).
[2]Yang, X., Zhou, G. & Wong, W.-Y. J. Mater. Chem.C 2, 1760– 1778 (2014).
[3] Kim, J.-B. et al.. Chem.Commun. 51, 58–61 (2015).
[4]Wang, B. et al.. J. Mater. Chem. C 3, 11192–11201 (2015).
[5]Tao, P. et al. Adv. Funct. Mater. 26, 881–894 (2016).
[6]Yang, X. et al Inorg. Chem. 55, 1720–1727 (2016).
[]7Du, X. et al. J. Mater. Chem. C 4, 5907–5913 (2016).
[8] Dahule H.K.,Dhoble S.J.,.Ahn J.S. Pode R.B. J. of Physics and Chemistry of Solids 72, 1524–1528 (2011)
[9] Hino, Y.; Kajii, H.; Ohmori, Y. Org. Electron. 2004, 5, 265.
[10] Jou, J-H.; Sun, M-C.; Chou, H-H.; Li, C-H. Appl. Phys. Lett. 2005, 87, 43508.
[11]Ooe, M.; Naka, S.; Okada, H.; Onnagawa, H. Jpn. J. Appl. Phys. 2006, 45, 250.
[12]Tsuzuki, T.; Tokito, S. Appl. Phys. Express 2008, 1, 02185.
[13].Udagawa, K., Sasabe, H., Cai, C. & Kido, J. Adv. Mater. 26, 5062–5066 (2014).
[14] Cao, H. et al. J. Mater. Chem. C 2, 2150–2159 (2014).
[15]Lee, J. et al. Nat. Mater. 15, 92–99(2016).
[16]Tao,Y.; Wang, Q.; Yang, C.; Zhang, K.; Wang, Q.; Zou, T.; Qin, J.; Ma,D. J. Mater.Chem. 2008, 18, 4091.
[17] Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.C.; Tsyba, I.;Bortz, M.; Mui, B.; Bau, R.; Thompson, M.E. Inorg. Chem. 2001, 40, 1704.
[18]Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.;Wang, Y. Chem. Commun. 2001, 1494;13
[19] Lu, L.; Jenekhe, S. A. Macromolecules 2001, 34, 6249.
[20]. Hancock, J. M.; Jenekhe, S. A.; Macromolecules 2008, 41, 6864.
[21] Morita, S.; Akashi, T.; Fujii, A.; Yoshida, M.; Ohmori, Y.; Yoshimoto, K.; Kawai,T.; Zakhidrov, A.A.; Lee, S.B.; Yoshino, K. Synth. Met. 1995, 69, 433.